
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

WebGLot: High-Performance Visualization in the Browser

Dan Lecocq ∗ Markus Hadwiger † Alyn Rockwood ‡

Figure 1: A few capabilities of WebGLot: (a) a visualization of a flow-field using noise texture advection, (b) the solution to a Poisson
equation calculated on a 2200x2200 mesh with a high-order stencil (c) a texture-mapped surface defined by a function of x, y, and t (d)
raycasting an isosurface from CT scan data of a foot.

Keywords: real-time, visualization, mathematical rendering, vol-
ume rendering, gpgpu

1 Introduction

Rendering mathematical primitives should be as easy as describing
them. There are several tools available for doing much of this but
there is still room for improvement in interactivity, flexibility and
robustness. WebGL + plot = WebGLot seeks to fill this role, provid-
ing a library for function plotting and data visualization while main-
taining flexibly and performance from within the browser [Khronos
b][Khronos a].

Among its strengths is its ability to offload intensive algorithms
effectively onto the GPU while providing a scripting interface for
easy exploration or application-building. The fact that it runs within
the browser makes it a good candidate for cross-platform portabil-
ity and ease of update. There has already been a great deal of work
in the field of streaming and asynchronous communication, which
solve many problems surrounding interactive web use. WebGLot
is poised to build upon much of that existing work to the end of
streaming field data or simulation results to a remote machines for
live review and experimentation.

2 Applicability

All major modern browsers support JavaScript (and many are get-
ting quite fast interpreters). This means that WebGL can in princi-
ple run on any system on a number of devices, and WebGLot seeks
to use it to be a highly portable and ubiquitously supported visual-
ization and plotting library. Researchers often spend a great deal of
time struggling to get application-specific code to compile on a new
machine; By embracing a very widely-used distribution format we
can eliminate much of this difficulty.

The only additional requirements are to have a graphics card sup-
porting OpenGL ES 2.0 or better, and a reasonable OpenGL driver.
Both of these are often requirements for visualization for most re-
search applications anyway.

By exploiting existing streaming techniques in JavaScript, we are
able to easily support a number of important applications for
streaming data visualization. From off-site visualization of cluster-
or supercomputer-run simulations, to monitoring data from sensor

∗email: dan.lecocq@kaust.edu.sa
†email: markus.hadwiger@kaust.edu.sa
‡email: alyn.rockwood@kaust.edu.sa

networks in real time. We envision it providing support for a large
number of such applications of growing importance.

This also allows for visualization techniques and applications to be
decoupled. We augmented an existing MPI-based n-body simula-
tion with a line to transmit intermediate results to a server instead
of outputting to a file. In an afternoon, we developed a WebGLot
application to visualize the results as they were calculated. APE
(the Ajax Push Engine) does not require clients to poll a server for
updates, but rather they are notified when new data arrives. With
minimal code changes, existing simulations can be augmented with
streaming visualization.

WebGLot could provide graphical and visualization support for e-
learning projects, allowing students to explore difficult or unintu-
itive phenomena. From understanding complex data without need-
ing to install highly specific applications to provide a way to experi-
ment with mathematical concepts. Many computers have relatively
high-powered graphics cards when compared to the machine’s CPU
and many medium-sized compute-intensive tasks can find life on
the GPU. With WebGLot we were able to achieve a peak perfor-
mance of 24 gigaflops on a NVIDIA 9400m (45% efficiency) with
a 2D Jacobi solver. WebGL has the potential to serve as a delivery
mechanism for HPC kernel use, and advanced visualization tech-
niques. We aim to lower the barrier for using advanced techniques
in visualization and GPGPU.

3 Goals

WebGLot seeks to be extremely easy-to-use, and only requires ba-
sic knowledge of JavaScript and familiarity with desired visualiza-
tion techniques. It’s flexible enough for a wide variety of appli-
cations, but robust enough for computation-intensive work. Adja-
cent to streaming technologies it enjoys easy support for streaming,
while requiring only JavaScript and a graphics card.

References

KHRONOS. Webgl public wiki. http://www.khronos.org/
webgl/wiki/Main_Page.

KHRONOS. Webgl specification. https://cvs.khronos.
org/svn/repos/registry/trunk/public/webgl/
doc/spec/WebGL-spec.html.

ROETTGER, S. The volume library. http://www9.
informatik.uni-erlangen.de/External/
vollib/.

http://www.khronos.org/webgl/wiki/Main_Page
http://www.khronos.org/webgl/wiki/Main_Page
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html
http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/

	Introduction
	Applicability
	Goals

